TECHNICAL INNOVATIONS IN NEW 500.000 T/YR WTE FACILITY IN THE CITY CENTER OF COPENHAGEN (AMAGER), DENMARK

Ole Poulsen, Ramboll

Beacon, Malmö, November 4, 2011

RAMBØLL

- Established i 1945
- Ramboll consulting group: approx. 9,000 employees
- Leading waste-to-energy consultant with >50 specialists within WtE
- Long track record of waste-toenergy plant projects – ongoing > 30 WtE projects.
- Independent consulting services

WASTE-TO-ENERGY PLANT REFERENCES

COPENHAGEN-AMAGER WTE PLANT

Capacity: 2 x 35 ton/h

4

COPENHAGEN-AMAGER WTE PLANT

PERFORMANCE GOALS

- World Class Architecture
- High Energy Efficiency
- Best Possible Environmental Standard
- High Level of Community Integration
- High Level of Public Acceptance

We want to show the world that it is actually possible to produce energy for the city ... and that it is possible to do this in the middle of the city... It is important that the waste-to-energy plant is integrated into the environment... the architecture should be a gift to the city!

World Class Architecture

7

VISUALISATION COPENHAGEN WTE

VISUALISATION COPENHAGEN WTE

9

VISUALISATION COPENHAGEN WTE

VISUALISATION BOILER HALL

High Energy Efficiency

MEASSURES TO INCREASE ENERGY EFFICIENCY

- Optimizing of boiler steam parameters
- Optimizing of district heating couplings
 - 2 water based DH networks
 - 1 steam based DH network
- Heat pumps
- Optimizing of technical concept and internal energy consumers

OPTIMIZING STEAM PARAMETERS

Expansion diagram

STEAM PARAMETERS: EU TRENDS

No strong tendency towards higher steam parameters...

WtE Plants (data from 2006)

WtE plants in EU15 countries, ISWA 2006 (inklusive condensing plants)

STEAM PARAMETERS EVALUATED

RISK FOR CORROSION

a) Evaporator part: Higher live steam pressure => High flue gas temperature and higher steam/wall temperatures WASTE SUPER-ECO ωŻ HEATER TURBINE b) Superheater part: Higher live steam temperature => Flue gas temperature <650 C and higher steam/wall temperatures (High temperature corrosion)

CORROSION DIAGRAM – EVAPORATOR PART

Evaporator wall temperatures

Beacon, Malmö, November 4, 2011 18

CORROSION – DIAGRAM SUPERHEATER PART

Super heater configuration 400C/40bar and 480C/70bar (with drum steam cooling)

CORROSION – SUPERHEATER PART

Furthermore there is a thermodynamic tendency to that the flue gas temperature before superheaters will increase with increasing steam parameters !

RAMBOLL

CORROSION – SUPERHEATER PART

Higher flue gas temperatures in front of superheaters results in a higher corrosion rate

NPV CALCULATIONS

RECOMMENDATIONS LIVE STEAM PRESSURE

CHANGE IN (GROSS) ELECTRICAL EFFICIENCY

ENERGY EFICIENCY

Basis: Steam data, 440°C / 70 bar,a	Production		Own consumption	Energy sales
Wet FGT Front-end SCR Flue gas condensation with heat pumps	El भ _{el} (brutto)	Heat ^{Nvarme} (brutto)	El n _{el}	Total efficiency η ^{total} (netto)
Operation without heatpumps	27,2%	65,8%	~ 2,7%	90,3%
Operation with heat pumps	24,8%	81,4%	~ 2,7%	103,5%

Source: Rambøll basic design study

Best Environmental Standard

SCENARIOS FOR THE LCA STUDY

- Dry:
 - Reactor (bicarbonate)
 - Baghousefilter
 - Economiser
- Semi-dry:
 - Reactor (hydrated lime)
 - Baghousefilter
 - Economiser
- Semi-wet:
 - Reactor (hydrated lime)
 - Baghousefilter
 - Economiser
 - Wet alkaline scrubber

- Wet:
 - Electrofilter
 - Quench
 - Wet acidic scrubber
 - Wet alkaline scrubber (calciumcarbonate)
 - Baghousefilter (activated carbon)
 - Waste water treatment
- De-NOx
 - SNCR (very low NOx)
 - SCR (tail-end)
 - SCR (front-end between ESP and Economiser)

LIFE CYCLE ANALYSIS OF FGT SCENARIOS

PE (over plant life time)

RAMBOLL

Beacon, Malmö, November 4, 2011 28

LIFE CYCLE ANALYSIS SCENARIOS WITH WET FGT ALTERNATIVES

PE (over plant life time)

EXAMPLE OF ROBUSTNESS OF FGT SOLUTION

News 2011-11-02:

Potential danish NOx tax increase from 5 kr/kg to 50 kr/kg

PLANT LAYOUT (WIND TUNNEL MODELS)

PLANT LAYOUT (WIND TUNNEL MODELS)

RESULTS

- Created Innovative Ideas
- Lowest Possible Air Emissions and High Energy Efficiency
- Reduces CO₂ Emissions
- A Landmark for the City of Copenhagen
- An Example of a Modern "Next Generation" WTE Plants
- => A Strong <u>Support</u> from the Public and from the City Council

THANK YOU FOR YOUR ATTENTION!

Ole Poulsen op@ramboll.dk www.ramboll.dk

